Login

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

What Are Aramid Fibers? Exploring Their Properties and ...

Author: Geoff

Sep. 09, 2024

23 0 0

What Are Aramid Fibers? Exploring Their Properties and ...

It might be difficult for you to conjure up an image when I mention aramid fibers. Still, if I told you that they are the raw materials used within body armor, bullet-proof vests, firefighter uniforms, etc., you start to get the picture.

If you are looking for more details, kindly visit our website.

In fact, aramid fibers are the superstar family in the fiber world. They appear as bright golden-yellow filaments (so far, more colors are available). The name comes from a combination of two words, "aromatic polyamide." Due to their outstanding strength-to-weight ratio and heat-resistant properties, aramid fibers are widely used in the above-mentioned protective-wear applications.

But aramid fiber properties are more than that (more on those later on). Aramid fibers play an essential role in composites, the automotive industry, military applications, and many similar fields.

1. History of Aramid Fibers

It took quite a while to work out how to utilize aramid fibers, mainly because they just can't be dissolved in anything. This makes the process of working with aramid fibers rather tricky. The dramatic development of aromatic polyamides is mainly down to the discovery of lyotropic liquid crystalline aramid, which in solid form is commercially known as Kevlar® (DuPont's brand).

In the early s, a Polish-American chemist named Stephanie Kwolek, a DuPont Research Scientist, invented the para-aramid, branded as Kevlar®. In , Kwolek's team started looking into a new lightweight, strong fiber for tires. The discovery of lyotropic liquid crystalline aramids enabled her to develop a novel spinning process for the anisotropic solution, leading to Kevlar's commercialization.

Structure of Kevlar, a para-aramid

Kwolek's invention of Kevlar was fundamentally groundbreaking. In July , she became the fourth woman to be added to the National Inventors Hall of Fame. In DuPont also awarded her the Lavoisier Medal for outstanding technical achievement, which is remarkable as she is the only female employee to have received the honor.

A Firefighter in Toronto, Canada wears a Nomex hood ()

However, aramid fibers themselves became commercialized in the early s, before the invention of Kevlar. The trade name was Nomex®, a meta-aramid fiber produced by DuPont. The credit for this great invention goes to Dr. Wilfred Sweeny, a Scottish-born scientist who also worked for DuPont.

This particular fiber features excellent thermal resistance, which means that it does not melt or catch fire at a typical oxygen level. This material was very quickly used to manufacture protective clothing, and air filtration units, and became a substitute for asbestos. Nomex® was marketed in and has saved millions of lives, including firefighters, aircraft pilots, and racing car drivers, to name but a few!

Meta-aramids are produced in many other countries including the Netherlands, Japan by Teijin under the trade name Conex, in Korea by Toray under the trade name Arawin, in China by Yantai Tayho under the trade name New Star, by SRO Group (China) under the trade name X-Fiper, a variant of meta-aramid in France by Kermel under the trade name Kermel as well.

There are even more twists and turns in the development of aramid fibers which you can see in the table below, the entire history of aramid fibers.

Development of Aramid Fibers

Year Event Producer Base Polymer Commercialization of Nylon Introduction of Nomex fiber DuPont Co., USA MPD-1 Discovery of anisotropic polymer Discovery of air-gap spinning Introduction of fiber-B DuPont Co., USA (i)PBA
(ii)PPD-T Introduction of Tejincorex
Commercialization of Kevlar
Introduction of Twaron
Introduction of Kermel
Introduction of Fenilon Teijin Ltd, Japan & DuPont Co., USA
Akzo Chemicals BF, Netherlands
Rhone-Poulene, France
USSR MPD-1
PPD-T
PPD-T
MPD-1
MPD-1 Introduction of SVM fiber(formerly Vniivlon) USSR Polyhetero arylene Development of arenka aramid fiber Introduction of HMO-50(Technora) aramid fiber Teijin Ltd, Japan Commercialization of Twaron (formerly Arneka)
Introduction of PBO-HM Toyobo. Japan Toyobo. Japan Introduction of Trevar(discontinued later) Hoecst. Germany Kevlar 49 HS by new fiber technology(NFT) DuPont Co., USA Introduction of Armos Russia p-aromatic hydrocyclic copolyamide

2. Categories of Aramid Fibers

In addition, both Nomex (a meta-aramid) and Kevlar (a para-aramid) have a number of variants each with specific properties.

For Nomex, its variations are of the copolyamide type, of which a well-known one is Teijinconex under Teijin.

For Kevlar, other para-aramid yarns can act as the replacement. They usually come at a lower cost, with Twaron and Technora by Teijin, Heracron by Kolon, as well as Alkex by Hyosung included, each of which can exhibit similar results to Kevlar.

Kevlar® and Para-aramid Filament Yarn Alternatives Compared

Manufacturer Dupont Hyosung Kolon Teijin Teijin Trade Name Kevlar®29 Alkex®AF- Heracron®HF200 Twaron® Technora® Specification UofM Density (g/cm3) 1.44 1.44 1.44 1.44 - 1.45 1.39 Tenacity (g/den) 23 23 23.0-24.0 18.7 - 28.3 28.3 Modulus (Gpa) 70.33 70 - 102 8. - 109 60 - 120 74 Elongation @ Break (%) 3.6 2.8 - 4.2 2.8 - 3.6 2.2 - 4.4 4.5 Moisture Regain (%) 7 4.5 not avail 3.2 - 5.0 1.9 Decomposition (°C) 427 - 482 500 not avail 500 500 (°F) 800 - 900 932 not avail 932 932

3. The Molecular Structure of Aramid Fibers

Aramid consists of relatively rigid polymer chains with linked benzene rigs and amide bonds. The structure endows aramid fibers with high tenacity, high modulus, and great toughness.

The molecular structure of aramids can be shown below:

Aramid

Kevlar is a kind of polyamide. Its amide groups are separated by para-phenylene groups. The amide groups attach to the phenyl rings opposite each other, at carbons 1 and 4.

3D Model of Kevlar Aramid. Click Here to see.

While Nomex is a polyamide, it has meta-phenylene groups. That is, the amide groups are attached to the phenyl ring at carbons 1 and 3.

4. The Properties of Aramid Fibers

Aramid fibers are created with a range of impressive properties. But due to the differences between para-aramid and meta-aramid, here I'd list the two separately.

#1. Para-aramid (typical example: Kevlar)

&#; High Strength-to-weight ratio: Para-aramid fibers, like Kevlar and Twaron, are slightly different from the others. The two have outstanding strength-to-weight properties. Plus, they have great tenacity, making it abrasion-resistant.

Material Strength-to-weight
KN.m/kg. Ultimate Tensile Strength
MPa Density
g/cm3 Kevlar 1.44 Carbon Fiber 1.75 E Glass Fiber 2.57 Carbon Laminate 785 1.5 E Glass Laminate 775 1.97 Nylon 69 75 1.15

&#; High Young's Modulus (structural rigidity): 130-179 GPa. While carbon fiber is 300Gpa and glass 81GPa.
(Young's Modulus: Also known as elastic modulus. It defines the relationship between stress and strain in a material)


Material Young's Modulus
GPa Aramid(such as Kevlar and Twaron) 70.5-112.4 Nylon 2-4 Polypropylene 1.5-2

&#; Low elongation at break point, meaning that it stretches a little.

&#; Para-aramids are usually Nonconductive under normal conditions.

&#; Good Resistance to abrasion and cutting.

&#; Good Resistance to organic solvents

&#; Retain Low flammability, and are resistant to thermal degradation and self-extinguishing.

&#; Keep Good fabric integrity at elevated temperatures

&#; Excellent Dimensional Stability.

#2. Meta-aramid (typical example: Nomex)

&#; Heat Resistance: Meta-aramid has long-lasting thermal stability. It can operate for long time at a temperature of 204°C and it maintains excellent dimensional stability. It doesn't go brittle, soften, or melt even if it is briefly exposed to temperatures up to 300°C.

&#; Flame Resistance: Meta-aramid is inherently flame resistant. It won't self-burn or melt at regular levels of oxygen. And it's self-extinguishing. It will carbonize at 400°C.

&#; Electrical Insulation: Meta-aramid has excellent electrical insulation properties. The dielectric strength of meta-aramid paper is up to 20kv/mm (Each meta-aramid differs).

&#; Chemical Stability: Meta-aramid has a very stable chemical structure. It's resistant to organic solvents.

&#; Radiation Resistance: Good resistance to Ultraviolet, α, and β.

&#; Mechanical Properties: Meta-aramid is formable for moldable parts.

&#; Low elongation at the breakpoint as well as para-aramid, meaning that it stretches a little.

The key properties of para-aramid and meta-aramid have been listed above. While the properties among para-aramid variations and meta-aramid variations differ, too.

The table below shows the various characteristics of aramid fibers and compiled from the Chemical Economics Handbook and Encyclopedia of Chemical Technology, Vol.19 and Indian Journal of Fiber and Textile Research.

Properties of Commercial Aramid Fibers


Fiber Type Density
g/cm3 Extension to Break
% Modulus
GPa Loop Elongation
% Kevlar29 1.43 3.6 70 2.1 Kevlar49 1.45 2.8 135 1.3 Kevlar119 1.44 4.4 55 2.7 Kevlar129 1.45 3.3 99 Kevlar149 1.47 1.5 143 0.6 Nomex 1.38 22 17 Twaron 1.44 3.3 79 Twaron HM N/a 2 123 Technora 1.39 4.3 70 Technora V106 1.32 3.7 77

5. Major Uses of Aramid Fibers

Thanks to the outstanding properties of aramid fibers, they can be used in a wide variety of industries.

&#; Flame-resistant clothing: For example, military MIL-G-B suits. This includes Heat-protective clothing and helmets.

&#; Substitute for asbestos (e.g. brake linings), whose fibers will give rise to pulmonary diseases after being inhaled into the lungs.

&#; Hot air filtration fabrics

&#; Reinforced thermoplastic pipes

&#; Bullet-proof wear: Body armor, competing with PE-based fiber products such as Dyneema and Spectra.

&#; Composite materials: Often combined with carbon fiber.

&#; Tires, most recently as Sulfron (sulfur-modified Twaron)

&#; Mechanical rubber reinforcement

&#; Ropes and cables, although severely weakening under impact, limit their use on boats and climbing. Aramid cables are more applicable to static load situations; for example, the cables are used as guy-wires for hydro tower erection for Hydro Quebec.

&#; Wicks for fire dancing

&#; Optical fiber cable systems

&#; Sailcloth (not necessarily racing boat sails)

&#; Sporting equipment

&#; Drumheads

&#; Wind instrument reeds, such as the Fibracell brand

&#; Loudspeaker diaphragms

&#; Boat hull material

&#; Fiber-reinforced concrete

&#; Tennis strings (e.g. by Ashaway and Prince tennis companies)

&#; Hockey sticks (normally in composition with such materials as wood and carbon)

&#; Snowboards

&#; Jet engine enclosures

 

Wholesale Aramid Yarn Fire Retardant Sewing Thread

Product Description

item

value

Product Type

Aramid Fiber

Material

100% Para Aramid

Feature

Heat-Resistant, Heat-Insulation

Use

Protective Apparel

Fiber Length

customized

Fineness

customized

Place of Origin

China

Model Number

16S/2

Small case packing

Net weight 20 kg, gross weight 22.5 kg

Detailed Photos



Our best sellers
 

 

Packaging & Shipping

 


FAQ

A) How could I get a sample?
Before we received the first order, please afford the sample cost and express fee. We will return the sample cost back to you within your first order.

B) Sample time?
Existing items: Within 3 days.

sft Product Page


C) Whether you could make our brand on your products?
Yes. We can print your Logo on both the products and the packages if you can meet our MOQ.


D) Whether you could make your products by our color?
es, The color of products can be customized if you can meet our MOQ.


E) How to guarantee the quality of your products?
1) Strict detection during production.
2) Strict sampling inspection on products before shipment and intact product packaging ensured.

For more information, please visit para aramid yarn.

Comments

0

0/2000