Login

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

Ultimate Checklist for Selecting Heavy Duty Conveyor Rollers

Author: Justin

Dec. 02, 2024

9 0 0

Ultimate Checklist for Selecting Heavy Duty Conveyor Rollers

In today&#;s industrial setting, conveyor rollers are becoming increasingly indispensable. They help to move materials and products from one section of a production line to another. However, selecting suitable heavy-duty conveyor rollers for your project can take time and effort. The rollers need to be strong, durable, and reliable to ensure the seamless running of your production line. We have compiled the ultimate checklist for selecting heavy duty conveyor rollers.

Read more

Consider Your Production Line Needs

Factors such as the required load capacity, conveyor speed, and orientation will determine your needed rollers. Conveyor rollers come in materials such as aluminum, plastic, and steel. It would help if you chose the roller length, shaft diameter, and bearing type best suit your project&#;s needs.

Quality of Materials

The materials used to create conveyor rollers considerably impact their longevity and performance. Depending on the application, it is crucial to consider elements like abrasion, corrosion, and temperature resistance when selecting a roller material. Common materials used for manufacturing rollers are steel, stainless steel, and polyurethane, each with unique benefits depending on the environment.

Type of Bearings

The type of bearings used in the conveyor rollers will determine their performance and lifespan. Consider the load capacity and production line conditions when selecting the type of bearings to use in your rollers. Standard bearing types used in heavy-duty conveyor rollers include precision, ball, tapered, and spherical bearings.

Safety Features

Safety features are crucial when selecting heavy-duty conveyor rollers. Features such as locking mechanisms, side guides and emergency stops help to ensure the safety of workers and products on the production line. Consider the safety features available before selecting the heavy-duty conveyor rollers for your project.

Use this comprehensive checklist to ensure you choose the suitable heavy duty conveyor rollers for your industrial application. Doing so will guarantee a smooth material flow, reduced downtime, and increased productivity. If you need heavy-duty conveyor rollers are best suited for your project, contact Conveyor Systems & Engineering, Inc. today.

Roller Conveyors: Types, Applications, Benefits, and Design

Roller Conveyors

Please fill out the following form to submit a Request for Quote to any of the following companies listed on



Introduction

This article takes an in-depth look at roller conveyors.

You learn details on topics such as:

  • What is a Roller Conveyor?
  • Construction of Roller Conveyors
  • Types of Roller Conveyors
  • Applications for Roller Conveyors
  • Benefits of Roller Conveyors
  • And Much More&#;

Chapter 1: What is a Roller Conveyor?

Roller conveyors are integral to material handling systems, utilizing a series of evenly spaced cylindrical rollers to transport boxes, supplies, materials, objects, and parts across an open space or between different elevations. The frame of roller conveyors is designed at an accessible height for easy manual loading and unloading. Items moved by roller conveyors must have rigid, flat surfaces to ensure smooth transit across the rollers.

Roller conveyors are versatile and used for various applications, including accumulation, reducing product inertia, and high-speed sorting. Drive roller conveyors feature rollers connected to a motor via a chain, shaft, or belt, which standardizes the movement speed of materials. They can be reversible and capable of moving goods between different levels, supporting bi-directional applications where the motor can alter the product's direction.

Chapter 2: How is a roller conveyor constructed?

Roller conveyors are designed with specific features to meet the needs of various applications. While roller conveyors can differ in structure, mode of movement, and manufacturer-specific features, they share several fundamental characteristics.

Powered roller conveyors utilize small belts and plastic spools to provide traction to the rollers. Friction belts or chains positioned beneath the conveyor drive the heavy-duty rollers. These belts or chains are connected to a shaft that runs the length of the conveyor's frame and is linked to an electric motor, which powers the rollers.

Rollers

Rollers for roller conveyors are metal cylinders fitted into its frame with sets of bearings on either end of the cylinder. There are several types of conveyor rollers each of which is designed to fit the needs of the product being transported. Rubber and plastic rollers increase friction while steel and aluminum rollers have a smooth surface. Rollers are selected for their ability to keep products on the conveyor, and their ability to maintain the integrity of products.

Plastic Rollers

Plastic conveyor rollers are cost-effective and designed for handling light loads. They are easy to install and require minimal maintenance. Plastic rollers comply with the noise standards set by the Occupational Safety and Health Administration (OSHA). Due to their resistance to corrosion, rust, and moisture, plastic rollers have a longer useful life. They are also easy to clean, making them ideal for transporting food packaging in the food industry.

Nylon Rollers

Nylon rollers are designed for medium to heavy loads, offering durability and strength for constant use. Made from synthetic polymers, they are resistant to abrasion, chemicals, and corrosion. Like plastic rollers, nylon conveyor rollers are lightweight, easy to install, and produce minimal noise due to their low vibration.


Rubber Coated Rollers

Rubber-coated rollers feature a layer of rubber placed over steel, stainless steel, or solid plastic rollers. This rubber coating enhances grip and provides protection for both the roller and the products being transported. The type of rubber coating varies based on industry requirements. Rubber-coated rollers are resilient, soft, and capable of gripping smooth materials effectively.

Rubber-coated rollers are anti-static, chemical-resistant, customizable, and durable. They are commonly used in industries such as automotive, printing, packaging, and fabrication. The increased friction provided by the rubber coating helps prevent slippage between the roller and materials.

Steel and Stainless Steel Rollers

Steel and stainless steel rollers are among the most popular materials for conveyor rollers due to their durability and smooth surface. They are easy to clean, long-lasting, and strong enough to handle heavy materials. Steel and stainless steel rollers often serve as the core for plastic, nylon, and rubber rollers due to their exceptional strength and smooth surface.

Stainless steel rollers are versatile and compatible with various materials. They can accommodate smaller diameters, feature precision bearings or fixed shafts, and can be adjusted to meet specific shipping and operational needs.

Structure of a Roller Conveyor

The frames of roller conveyors can be either permanently installed or temporarily positioned and are typically made from steel, stainless steel, or aluminum. Temporary roller conveyors offer the flexibility to be assembled, disassembled, and repositioned as needed. Among the structural metals used, aluminum is lighter and ideal for handling lighter loads.

Support legs for roller conveyors come in various sizes, materials, and styles to match the specific requirements of the conveyor and its loads. They may feature a tripod or "H" design, with "H" design legs categorized into light duty, medium duty, and heavy duty. These support legs are constructed from channel material and are designed to accommodate rollers of different diameters.


Roller Conveyor Motor

Roller conveyor motors are typically 24-volt DC motors, which are energy-efficient and produce less torque, enhancing safety. In a motorized roller conveyor system, the conveyor is divided into zones, with each zone equipped with a motor-driven roller (MDR). These motors are integrated into the rollers within each zone and are controlled by an operator who adjusts the speed and direction of the conveyor's movement.


Non Precision Bearings

Non-precision bearings, such as sleeve bearings and bushings, have looser tolerances and lower accuracy compared to precision bearings. They are typically made from the same materials as precision bearings but are designed for smaller loads and lower speeds. The term "non-precision" indicates that these bearings do not require the high accuracy and tight tolerances of precision bearings. They are commonly used in applications where precise performance is not critical.

Angular Contact Ball Bearings

Angular contact ball bearings are designed to handle combined radial and axial loads by making contact with the line of action of the load at an angle. The inner and outer ring raceways of these bearings are positioned close to each other in the direction of the bearing axis, allowing them to manage both radial and axial forces effectively. There are several types of angular contact ball bearings, including single row, double row, and four-point contact bearings, each suited for different applications based on their load-handling capabilities.


In motorized roller conveyors, angular contact ball bearings are crucial for supporting the conveyor's line shaft, which is a long, rotating cylinder linked to the rollers through belts and drive spools. When the shaft is activated, it powers the rollers to move the materials. The combination of angular contact ball bearings, the shaft, belts, and drive spools ensures smooth and efficient operation of the conveyor system, reducing noise and increasing performance.

Pillow Block Bearing

Pillow block bearing, also known as plummer block bearing, are means for supporting the shaft. They are commonly used with conveyor systems and have a single bearing that is mounted parallel to the conveyor. Pillow block bearings have a mounting block that houses the bearing and is bolted to a support surface.

Pillow block bearings are designed to manage misalignments and shaft deflections. They are commonly utilized for their capacity to support both axial and radial loads effectively.

Roller Conveyor Sprockets

Roller conveyor sprockets are specialized gears that engage with conveyor chains to drive the rollers on a powered conveyor system. These sprockets come in various sizes, which are determined by factors such as the number of teeth, power requirements, diameter, and bore length. Sprockets may feature plastic hubs suitable for light to medium loads, while steel hubs offer greater strength for handling heavier loads.

Roller Conveyor Curves

Roller conveyor curves are integral to a conveyor system, allowing for changes in direction and flow of materials while maintaining their orientation. These curves are engineered to navigate around corners, bends, and obstacles. The design of the curve is influenced by its angle, which typically ranges from 30° to 90°, with angles exceeding 90° requiring specialized engineering solutions.

Rollers for roller conveyor curves are conical or cylindrical shaped to be able to adjust the radius of the curve. They are designed to handle cardboard boxes, plastic crates, tires, and lightweight items. Roller conveyor curves are adjusted for the size and weight of the goods being transported and have support rollers on their frame.

Roller conveyor curves may include additional features such as side guides, which can be either fixed or adjustable. While traditional roller conveyor curves are single curves, S-shaped designs are used to save floor space. Spiral roller conveyors, which transition from one level to another, are employed in systems with limited space. Other variations include split, multi-track, and double-deck curves.

Chapter 3: What are the different types of roller conveyors?

Roller conveyors come in various forms, primarily categorized into powered (motor-driven) and gravity roller conveyors. Gravity roller conveyors represent the most basic type, where products are moved manually along the rollers. In contrast, powered roller conveyors include several types, each equipped with different power systems to drive the rollers.

Gravity Roller Conveyor

Gravity roller conveyors are the simplest type of roller conveyor, featuring a frame with rotating rollers and support legs, relying solely on gravity to move materials. They are designed for transporting light to medium weight loads and are cost-effective due to the absence of a motor.


Gravity roller conveyors are constructed from materials like steel, aluminum, and plastic. They may include components such as curves, slide rails, supports, hanging brackets, sensors, and pop-up stops. These conveyors are often used as temporary setups or as substitutes for skate wheel conveyors in heavy-duty applications where precise scheduling of stacked loads is not required. A notable advantage of gravity roller conveyors is their flexibility in positioning during loading and unloading, enhancing efficiency and reducing processing time.

Belt Driven Live Roller Conveyor (BDLR)

Belt-driven live roller conveyors utilize a motor to power each roller via a motorized belt, enabling precise control over material movement. This setup allows for halting, turning, side unloading, sliding, and reversing of loads. The motor-driven belts facilitate the vertical movement of materials and maneuverability around curves. Some models include a shaft positioned perpendicular to the rollers, which adjusts and drives the belts that power the rollers.


Certain belt-driven live roller conveyors feature rollers positioned higher than the frame to accommodate goods wider than the conveyor itself. BDLR conveyors are suitable for transporting clean and dry medium to heavy loads and offer the ability to pause or reverse the flow of materials.

Chain Driven Roller Conveyor

Chain-driven roller conveyors use a chain drive system connected to each roller. Unlike single chain-driven conveyors that use one long chain to power all rollers, these conveyors have sprockets attached to each roller to drive and rotate them individually.

Chain-driven roller conveyors offer high power transfer, making them ideal for handling medium to heavy loads. They can also reverse direction, enabling bidirectional material movement.

These conveyors are used in applications such as palletizing, filling, load staging, and strapping. Although not as powerful as roll-to-roll powered conveyors, chain-driven roller conveyors are known for their durability and excellent performance in demanding and hazardous environments.


Line Shaft Roller Conveyor

Line shaft roller conveyors utilize a rotating shaft connected to the rollers through drive spools and belts. Each roller is linked to the shaft via its own spool and belt. When the shaft is activated, it drives the belts, which in turn rotate the spools and rollers.

An electric motor, regulated by a programmable logic controller (PLC), powers the shaft. This design eliminates the need for chains and sprockets, resulting in a quiet and smooth operation. The shaft extends along the conveyor and is positioned beneath the rollers on one side of the frame.

With competitive price and timely delivery, 成钢 sincerely hope to be your supplier and partner.


A single line shaft can drive more than 100 feet of both straight and curved rollers, enhancing the efficiency of the conveyor system. These conveyors are ideal for tasks such as accumulation, sorting, managing low back pressure, and handling medium to light loads.

Line shaft roller conveyors are not recommended for use in harsh or hostile environments. They should be avoided in wet or oily conditions, at slow speeds, or on inclined surfaces. It's important that the materials being conveyed maintain contact with at least three rollers at all times.

Zero Pressure Roller Conveyor

Traditional accumulation conveyor systems allow materials to collide and pile up, creating pressure that can compromise product quality. These systems lack control over material movement, causing them to continue operating even when products are stationary and stacked.

Zero pressure roller conveyors, also known as pressureless accumulating conveyors, use 24-volt DC motors to drive individual zones, with control managed by photoelectric sensors. These sensors send information to a central controller, which monitors the status of the zones. If a zone ahead contains items, the controller halts movement to avoid accumulating back pressure.

Each zone of a zone pressure roller conveyor has a powered roller, sensor, and three or four slave rollers. The powered roller is connected to the controller, which determines when products can leave or enter the zone. The rollers are powered by an internal motor linked to non-powered slave rollers by O-rings.


Zero pressure roller conveyors can be purchased as kits designed to retrofit older conveyor systems, and they are ideal for automation tasks that demand precise timing, speed control, and consistency. Although they are more complex and involve electronic components compared to older models, they offer improved efficiency, better material flow regulation, and a smoother transfer of goods.

Motor Driven Live Roller (MDR)

Motor-driven live roller conveyors feature transportation rollers equipped with small 24-volt DC motors integrated into each roller. The system is segmented into zones, each comprising a motorized roller and three or four additional rollers driven by the motor. These zones function as accumulation areas. Photoelectric sensors, along with controller cards, manage the flow of products and the operation of the roller motors.


Motor-driven roller conveyors are well-suited for accumulation tasks due to their compact design. They simplify the system by removing the need for PLCs or complex pneumatic setups. The conveyor's transportation rollers are driven by bands that can be easily replaced. To accommodate declines, inclines, or variations in speed, belts are used in conjunction with the MDR rollers.

Merge Roller Conveyors

Merge roller conveyors, also known as combiner roller conveyors, are designed to gather products from multiple incoming lines into a single stream. Typically used for consolidating products from upstream sources, these conveyors handle light to medium loads and can merge two to four lines. Their design incorporates either fixed or powered rollers to facilitate the combination of incoming product flows.

The primary advantage of merge roller conveyors is their ability to reduce manual handling of products while efficiently integrating upstream and downstream processes. They enhance warehouse flow and decrease the need for labor in product placement and movement. Additionally, merge roller conveyors can be easily repositioned and adjusted to accommodate changing needs.

Chapter 4: What are the applications for roller conveyors?

Since their debut in , roller conveyors have become crucial in product handling, assembly, and supply chain management. These conveyors are versatile and can manage loads of various sizes. Over time, their designs and functions have evolved significantly, with continual innovations and improvements being introduced.

Roller conveyors are used for a variety of applications, including:

  • Moving products across large areas with less labor
  • Transportation of heavy and cumbersome goods and materials
  • Saving labor costs by moving products while other activities are completed
  • Prevent injuries to workers from the stress of lifting to items falling
  • Ensure the safe transport of products with damaging them
  • Integral parts of robotic functions and actions.

Custom Designs

Each application for roller conveyors requires a bespoke design tailored to specific needs. For optimal performance, a roller conveyor must be engineered to fit its intended environment. Custom roller conveyors often include modular components like straight sections, curves, transitions, mergers, power types, and separators. Every aspect must be carefully integrated into a cohesive system.

Designing a custom roller conveyor presents challenges, such as deciding whether the system will operate as a standalone unit or be part of a more complex setup with interconnected components. It&#;s also essential to determine the type of power used&#;whether chain, belt, or roller&#;based on system requirements.

Airport Roller Conveyors

Roller conveyors play a critical role in airports, including applications like check-in counters, baggage handling systems, and loading areas. Depending on the handling requirements, both gravity and powered roller conveyors are utilized to manage different types of baggage and packages.

Assembly Roller Conveyors

In assembly settings, roller conveyors come in various forms such as overhead, belt, and traditional roller types. While conveyor systems can sometimes be noisy and disruptive, roller conveyors are preferred for their reliability, durability, and quieter operation, which enhances worker comfort.

Supply Chain Roller Conveyors

In supply chain and warehouse operations, roller conveyors offer a cost-effective alternative to forklifts for product movement. They simplify logistics by reducing manual handling, speeding up product flow, and easing the workload on workers.

Packaging Roller Conveyors

The packaging industry relies heavily on roller conveyors for moving, stacking, and sorting packages. Depending on the specific requirements, either gravity-fed or powered roller conveyors are employed to facilitate efficient package processing.

Food and Beverage Roller Conveyors

Designing roller conveyors for the food and beverage sector is complex due to stringent industry regulations and standards. These conveyors must meet high cleanliness and hygiene standards to be suitable for use in food and beverage applications.

Metal Working Roller Conveyors

In metalworking, roller conveyors are primarily used for sorting and identifying scrap materials. Their robust construction and adaptability make them well-suited for handling heavy loads and various metalworking processes.

The industries mentioned above are just a few examples of how roller conveyors are integral to diverse sectors. From automotive manufacturing to robotics, roller conveyors are crucial for efficient product handling and movement.

Leading Manufacturers and Suppliers

    Chapter 5: What are the benefits of roller conveyors?

    Roller conveyors are highly valued for their adaptability and versatility, allowing them to be configured for various conditions. Temporary roller conveyors can be relocated as needed, while permanent ones are designed for durability and long-term use. Since their inception in the early 20th century, roller conveyors have been employed across a wide range of industries, serving both traditional and innovative applications.

    • Speed - Roller conveyors are a safe and fast transport system, which reduces the risk of damage to goods due to mishandling.
    • Reliability - One of the reasons for the continued use of roller conveyors is their reliability as a long lasting logistics solution.
    • Cost Effectiveness - Roller conveyors are long lasting due to their toughness and durability. The initial investment in their cost is amortized over their many years of use.
    • Efficiency - The speed at which roller conveyors can move goods enhances and improves material movement.
    • Maintenance - Roller conveyors require limited maintenance due to their simple design and few moving parts, which reduces material handling downtime.
    • Safety - The continued use of roller conveyors has significantly reduced injuries due to the removal of the need to lift and move products by hand. This is one of their main benefits since workers no longer need to lift heavy packages or containers, a process that can be completed using various lifting mechanisms.
    • Customizable - The versatility, structural flexibility, and conformability of roller conveyors makes it possible to place them in any space where product movement is required. Every roller conveyor has to be engineered to fit the conditions where it will be used.

    Chapter 6: What are the regulations regarding roller conveyors?

    Safety Requirements of Conveyors

    The Occupational Safety and Health Administration (OSHA) provides guidelines for the safe operation of conveyor systems. Additionally, the American National Standards Institute (ANSI) offers safety standards for conveyor design, in accordance with the American Society of Mechanical Engineers (ASME) guidelines. Both organizations regularly review and update their standards to incorporate new developments and technological advancements.

    OSHA Guidelines

    • .555(a): General requirements.
    • .555(a)(1): A motor stop switch should be found at the operator&#;s position. The system must have a pilot light with a sound that rings when the system is powered on.
    • .555(a)(2): Remote operations should have a stop switch at the motor.
    • .555(a)(3): The emergency stop button avoids reactivation of the system until the emergency button is reset to "ON."
    • .555(a)(5): Overhead conveyors should have a protective covering below the conveyor. If the position of the conveyor is far from employees, this can be ignored.
    • .555(a)(6) & .555(a)(6): Warning signs must be put on aisles, crossovers, and passageways.
    • .555(a)(7): Conveyors should have warning signs or be locked out during regular maintenance.
    • .555(a)(8): Conveyors should be made and maintained according to ANSI B20.

    ASME Guidelines

    Conveyor safety standards are included in:

    • ASME B11.0-, which mentions safe use of machines and mentions several safety devices that must be part of the construction and installation process.
    • ASME B20.1-: ASME B20. 1 - has the design requirements, maintenance, construction, and operation of a conveying system concerning hazards. It&#;s a set of general safety guides. ASME B20. 1- is for industrial use conveyors and not those which are designed to mobilize people.
    • ASME B20. 1- is part of the specifications in ASME B20.1, ANSI B11.19, ANSI A.1, ANSI 244.1, which mention safety guides for conveyors.
    • ASME B20.1 and ANSI B11.19: These are in ASME B20. 1- that explains the requirements for installation, construction, inspection, maintenance, and operation of a conveyor system.
    • ASME B20.1, ANSI B11.19, ANSI B11.0: These are more details concerning safety processes for temporary, permanent, and portable conveyors.

    Chapter 7: What is involved in the maintenance of roller conveyors?

    Conveying systems consist of interconnected components that rely on each other for optimal operation. Different types of roller conveyors require regular maintenance to ensure they function correctly. To prevent issues and maintain system efficiency, it's crucial to schedule routine inspections of the conveyor's components that impact its overall performance.

    Conveyor Maintenance Steps

    The drive chain and sealed roller bearings must be oiled. Operators should be trained as to the proper inspection procedures in regard to bearings, rollers, shafts, belts, and DC motors.

    Driver rollers should be regularly cleaned to prevent blockages in the system. Residue or debris that accumulates during operation needs to be removed from the roller surfaces. Use cleaners specifically designed for each type of roller; for instance, stainless steel rollers should be rinsed with water and cleaned with detergent. Implementing preventative maintenance helps to address minor issues before they escalate and ensures the equipment operates effectively.

    Preventative Conveyor Maintenance

    Preventative maintenance includes inspecting conveyor rollers for smooth and consistent movement, checking for wear on drive chains or belts, and ensuring rollers are level. Rollers should operate uniformly in the same direction; any wobbling or lack of movement indicates a problem that requires immediate attention. Bearings, which are prone to wear, should also be regularly examined to ensure they are functioning properly.

    Roller conveyors, like any continuously operating equipment, experience wear and degradation due to environmental conditions. High temperatures and humidity can adversely affect their performance, necessitating more frequent inspections. To maintain optimal performance, it&#;s crucial to allow the system to cool down periodically and schedule regular maintenance checks.

    Chapter 8: What considerations should be taken into account when choosing roller conveyors?

    A conveying system can be incorporated into operations in multiple ways to enhance efficiency and speed. Before installing a roller conveying system, it's essential to evaluate several factors to tailor the system to the specific needs of the application.

    Available Space

    When designing a conveying system, manufacturers take into account the available space to ensure effective integration. This involves identifying key interaction points, required clearances, and any potential obstacles that could hinder material movement. The choice between automated and manual systems depends on the specific application and operational requirements.

    Roller Frame Material

    The frame of a roller conveyor is typically constructed from aluminum or steel, chosen based on the load requirements and the frame's capacity rating. Rollers, which directly contact the products and influence their movement, come in a variety of materials. Some are coated with plastic or rubber to enhance friction, while others are made of aluminum or steel. Properly selecting roller materials ensures reliable product transport without compromising system integrity.

    Roller Size and Orientation

    Determining the size of the material to be conveyed and the optimal conveyor layout is crucial to avoid obstructing product movement. Roller sizes should match the load and operating conditions: heavy or high-impact loads require larger rollers, while lighter or slower loads can be managed with smaller rollers.

    The spacing of rollers is calculated to ensure that three rollers are always in contact with the load. For wider loads, high-set rollers are used, while low-set rollers help keep products within the conveyor frame.

    Load Capacity

    Establishing the load capacity is vital once the system layout is finalized. Overloading can cause system malfunctions or stoppages. Factors affecting load capacity include overall length, bed width, and the drive system. Gravity roller conveyors are suitable for flat-bottomed, light to medium-weight items like totes, boxes, and bags but are not ideal for fragile or irregularly shaped products.

    System Speed

    The speed of a conveying system, measured in feet per minute (fpm), typically averages around 65 feet per minute, similar to the walking speed of a person carrying a 50-pound load. While this is a standard speed, the system can be adjusted to meet specific application needs.

    Roller Conveying System Configuration

    Roller conveying systems come in various shapes, styles, sizes, and configurations, including straight, angled, horizontal, or curved designs with pockets, slats, or Z-frames. For long distances, more efficient designs like line shaft roller conveyors can be used to conserve energy. Roller conveyors can be installed in various facilities or structures, provided that all relevant factors are carefully considered.


    Drive System

    The drive system in an automated conveying system facilitates the movement of materials and includes counter bearings to maintain smooth operation. Drive systems offer the flexibility to transport goods in both directions and can be installed at various locations within the system&#;whether in the middle, at the start, or at the end.

    Depending on the design of a drive system, it can have single or variable speeds that are driven by a 24 V DC motor attached to gears, rollers, or a shaft. Variable speed drives allow variations in material flow rates.

    Behavior, Control, and Environment

    When designing a roller conveyor, key factors such as product mobility, control, and placement are crucial considerations. The performance of a roller conveyor can be influenced by environmental factors like heat, dust, dirt, and moisture. In such cases, more robust designs, such as shaft-driven or chain-driven models, may be necessary. Zero-pressure models with precise timing are well-suited for conditions where back pressure might occur. Although gravity conveyors have a simpler design, they are equally vulnerable to the effects of wear and environmental degradation as more complex systems.

    Conveying System Safety

    The Occupational Safety and Health Administration (OSHA) oversees the regulation of conveyor systems to ensure they comply with federal safety standards. Conveyor manufacturers are required to adhere to these regulations. Conveying systems serve as a preventive measure, reducing the need for personnel to manually lift and transport heavy objects.

    Disadvantages of Roller Conveyors

    In addition to the regular maintenance required for all equipment, roller conveyors have certain drawbacks that can affect their selection and use. It&#;s important to consider these factors carefully to ensure that the chosen conveying system aligns with the specific needs of the application.

    • Damage to Goods - Gravity conveyors have little control over the movement of goods, which can lead to goods being damaged.
    • Weight - Roller conveyors are very heavy and get heavier as they get longer.
    • Conveyor Speed - Roller conveyors that are not power driven do not have any control over the rate of speed at which goods are moved.
    • Cleaning - Keeping roller conveyors clean is difficult due to the number of rollers and its constant use. In locations with multiple roller conveyors, a janitorial staff is assigned to cleaning rollers. In all cases, keeping the rollers clean and free of debris is essential for optimum performance.
    • Space - All forms of conveying systems take up a great deal of space, which is calculated into the customized design of roller conveyors. When the decision is made to install a roller conveying system, it must be noted that large areas of a facility will be devoted to it.

    Conclusion

    • Roller conveyors are part of material handling systems that use a series of evenly spaced cylindrical rollers to move boxes, supplies, materials, objects, and parts across an open space or from an upper level to a lower level.
    • Each roller conveyor system is designed to meet the needs of a specific application.
    • Though gravity roller conveying systems are the most well-known, other types include belt driven rollers, chain driven rollers, line shaft rollers, and zero pressure rollers.
    • Roller conveying systems, like any other type of machine, require routine maintenance and cleaning.
    • OSHA and ASME provide regulations and guidelines for the use and design of conveying systems.

    Leading Manufacturers and Suppliers

      Comments

      0

      0/2000